Regardless of where one looks – in professional journals, statements by policy officials, even the activities of many non-governmental organizations – the pattern is largely the same: the discourse of security problems relating to missiles is dominated by approaches that stress non-proliferation, arms control, and defence.

With few exceptions, this has been true for decades. The Missile Technology Control Regime (MTCR), created by a group of missile supplier countries in 1987, drew heavily upon the traditional non-proliferation approach. More recently, the Global Control System proposed by the Russian Federation on 16 March 2000 approaches the problem using various tools of arms control. The “gamut” of multilateral cooperation in the missile field, in short, has fluctuated in almost dialectical fashion between these twin narrow poles of arms control and non-proliferation. With the exit of the United States from the Anti-Ballistic Missile Treaty, the range of acceptable discourse has now expanded to include multilateral cooperation in developing missile defences – a development that entails new dangers of nuclear and missile proliferation, including the global spread of ballistic missile defence technologies that this treaty had specifically prohibited.

Disagreements, however, over the timing of progress on missile disarmament and difficult problems of verification – aggravated by the continuing interest of many states to retain, export or acquire missiles – have together worked to frustrate any substantial progress in achieving this goal. The basic problem has therefore not been so much the failure of the world community to recognize that missiles pose threats to international peace and security, as its inability to reach a consensus on disarmament as the appropriate response.

Given the problems encountered in achieving missile disarmament through an agreement on general and complete disarmament, it is useful to examine the potential contributions from some alternative paths to this goal. No single “model,” however, will suffice as the basis for a global missile disarmament convention.

Regardless of where one looks – in professional journals, statements by policy officials, even the activities of many non-governmental organizations – the pattern is largely the same: the discourse of security problems relating to missiles is dominated by approaches that stress non-proliferation, arms control, and defence.

With few exceptions, this has been true for decades. The Missile Technology Control Regime (MTCR), created by a group of missile supplier countries in 1987, drew heavily upon the traditional non-proliferation approach. More recently, the Global Control System proposed by the Russian Federation on 16 March 2000 approaches the problem using various tools of arms control. The “gamut” of multilateral cooperation in the missile field, in short, has fluctuated in almost dialectical fashion between these twin narrow poles of arms control and non-proliferation. With the exit of the United States from the Anti-Ballistic Missile Treaty, the range of acceptable discourse has now expanded to include multilateral cooperation in developing missile defences – a development that entails new dangers of nuclear and missile proliferation, including the global spread of ballistic missile defence technologies that this treaty had specifically prohibited.

Disagreements, however, over the timing of progress on missile disarmament and difficult problems of verification – aggravated by the continuing interest of many states to retain, export or acquire missiles – have together worked to frustrate any substantial progress in achieving this goal. The basic problem has therefore not been so much the failure of the world community to recognize that missiles pose threats to international peace and security, as its inability to reach a consensus on disarmament as the appropriate response.

Given the problems encountered in achieving missile disarmament through an agreement on general and complete disarmament, it is useful to examine the potential contributions from some alternative paths to this goal. No single “model,” however, will suffice as the basis for a global missile disarmament convention.
For the purposes of assessing their efficacy, a model for missile disarmament should have the following basic characteristics: an unambiguous goal; sustainability (which combines both technical and political feasibility); and a capacity to address the problems of space launch vehicles (SLVs) and the peaceful uses of outer space. As M.V. Ramana has recently written in the context of missile non-proliferation efforts, it must address the many motivations that lead states to seek or to retain missiles, in particular the motivations related to security interests, domestic or bureaucratic politics, and prestige. It must also confront political problems associated with the economic interests that support the continued production or retention of missiles.

INF Treaty

Many features of the Intermediate-Range Nuclear Forces (INF) Treaty have the potential to serve the more general goal of missile disarmament. The treaty certainly had an unambiguous goal: the total physical elimination of ground-launched ballistic and cruise missiles (and associated support equipment) possessed by the United States and the Former Soviet Union with ranges between 500 and 5,500 kilometers. The goal has also been successfully achieved. Upon the official completion of the inspections under this treaty in May 2001, marking the destruction of some 2,700 INF missiles, both US and Russian officials indicated that they viewed this treaty as important in encouraging further arms reductions. US Ambassador Steven Steiner, for example, noted that “the START inspection regime is based in large part on the successful regime that was developed in INF.”

US Ambassador Steven Steiner noted that “the START inspection regime is based in large part on the successful regime that was developed in INF.”

The treaty was important not only in eliminating missiles, but also in the physical destruction of all such missiles. The treaty was also concluded fully within the context of a broader goal of global nuclear disarmament and the need to reduce nuclear dangers. Its Preamble, for example, recognized that the parties were “Conscious that nuclear war would have devastating consequences for all mankind” and were “Mindful of their obligations under Article VI” of the NPT, which deals with nuclear disarmament.

The INF Treaty, however, cannot stand alone as a model for global missile disarmament. First, the treaty did not require the destruction of either nuclear warheads or the missile guidance pack.

The INF Treaty does not cover missiles that are capable of delivering weapons of mass destruction in ranges less than 500 km – missiles that are far more common today than Intermediate Range Ballistic Missiles or Intercontinental Ballistic Missiles.

START

The START I and START II treaties, when fully implemented, will reduce the numbers of deployed, accountable strategic nuclear weapons of the United States and Russia to 3,000-3,500. They will (inter alia) reduce the number of delivery vehicles, eliminate land-based ICBMs with multiple warheads (MIRVs), eliminate heavy ICBMs, and establish an intrusive system of verification involving both on-site inspections and various forms of continuous monitoring. In 1997, the leaders of the US and Russia agreed on a “memorandum of understanding” on treaty succession (following the dissolu-
tion of the USSR) and two “agreed statements” on the demarcation of types of missiles controlled under the Anti-Ballistic Missile(ABM) Treaty. During their Helsinki summit meeting in March 1997, the two leaders also agreed on some basic goals for a START III treaty, including new reductions down to a level of between 2,000 and 2,500 strategic warheads, new understandings with respect to transparency and weapon destruction, and possible new progress in the areas of submarine-launched cruise missiles and tactical nuclear weapons.15

The Preambles of START I and II are interesting from the standpoint of disarmament because of their references to the dangers of nuclear war and the importance of the NPT. While clearly focused on the reduction of deployed strategic arms, rather than nuclear disarmament per se, both treaties at least implicitly recognize this as a common goal. The negotiation and implementation of these treaties also required the involvement of an extensive bureaucratic infrastructure, backed by its own various arms control constituencies in civil society and in the legislatures. In December 2001, the US and Russian Federation announced the completion of the basic arms reduction goals of START I.16

START I, however, did not require the destruction of any nuclear weapons. It also took twelve years from the start of negotiations on the treaty in 1982 to its final entry into force in 1994. The treaty was some 900 pages in length and very complex, even in the eyes of many experts. START II, while further cutting the numbers of deployed nuclear weapons, also did not require the destruction of nuclear weapons per se. The treaty is also not yet in force – given the dispute between the US and Russian Federation over the ABM Treaty leading to the recent US decision to leave that treaty. It remains to be seen if a new agreement on strategic arms reductions will require the binding, verified destruction of nuclear weapons.17 Concerns remain over the viability of the treaty commitments made under START II, including the ban on land-based MIRVs and heavy missiles. Finally, neither treaty provided for any multilateral role in verification activities.

The NPT

The NPT has three formal goals: to require negotiations on effective measures relating to nuclear disarmament and on a treaty on general and complete disarmament; to prohibit the global spread of nuclear weapons; and to ensure that nuclear energy is used only for peaceful purposes. Its Preamble also envisages the elimination of all delivery vehicles for nuclear weapons. These goals are quite unambiguous.

The treaty has also demonstrated its sustainability – in 1995, its parties agreed to extend the treaty indefinitely and the parties will convene every five years to review compliance with the treaty, and meet every three years before each review conference in “preparatory committee” sessions that also provide an opportunity for the parties to assess compliance.18 The Final Document of the treaty’s 2000 Review Conference included an agreement on thirteen “practical steps” that the parties will use to measure progress toward achieving nuclear disarmament.19 The NPT has 187 states parties, which brings it closer to universal membership than any other international security treaty aside from the UN Charter itself.

The treaty’s preparatory committee and review processes help to ensure that its states parties are individually monitoring compliance with the treaty – this encourages each party to devote at least some bureaucratic resources to monitoring developments that are relevant to the treaty, advising political leaders and foreign embassies, developing initiatives to support the treaty’s goals, and sustaining public support.

While the NPT has a formal means (i.e., safeguards administered by the International Atomic Energy Agency) to verify the peaceful uses of nuclear energy, it lacks any equivalent institutional framework to ensure compliance with the disarmament goal. There is no provision in the treaty for specific actions to be taken in the event of a violation, nor does it prescribe the means by which the parties can determine that a non-safeguards violation has occurred. The treaty’s sweeping and unambiguous non-proliferation obligation (“not in any way to assist”) applies explicitly to the nuclear-weapon states, but does not extend to assistance by non-nuclear-weapon states to non-parties.

This last distinction relates to another problem facing the treaty, namely its discriminatory division of states into nuclear have’s and have not’s – a feature that makes the treaty particularly inappropriate as a model for any global, non-discriminatory disarmament agreement. The preamble, for example, of the UN General Assembly’s most recent resolution on MISSILES cites the need “for a comprehensive approach towards missiles, in a balanced and non-discriminatory manner, as a contribution to international peace and security.”20

Another shortcoming with the treaty concerns the failure of the review and preparatory committee meetings to assess progress made in achieving the Preamble’s goal concerning the elimination of delivery systems. This neglect of delivery systems is noteworthy, given that Article VIII(3) of the treaty explicitly states that the treaty’s review conferences are intended to assure “that the purposes of the Preamble and the provisions of the treaty are being realized.”

Other Possible Approaches

1. A “Globalized INF Treaty.” Kathleen Bailey and Kenneth Adelman have separately proposed this selective approach to missile disarmament.21 In brief, this proposal would simply extend worldwide the prohibitions of the INF Treaty. The proposal would, of course, globalize all of the shortcomings of the existing treaty. In particular, it would fail to address both shorter-range missiles capable of delivering weapons of mass destruction (including those covered by the MTCR) as well as ICBMs. By leaving both types of missiles outside the treaty, the proposal could well even further legitimize the possession or acquisition of such “unprohibit-ed” delivery vehicles.

2. A “Zero Ballistic Missiles (ZBM)” approach. The leading advocate of this
Many of whom have since joined the Bush former governmental defense officials, institute for Public Policy, a US non-governmental organization. Advanced (inter alia) by Kenneth Adelman. A proposer of Arms Control Without Agreements. The difficult negotiations associated with the START process have led many to favor an alternative approach to arms reductions via unilateral initiatives, or parallel reciprocated actions. This general approach to arms control has been advanced (inter alia) by Kenneth Adelman and by analysts at the National Institute for Public Policy, a US non-governmental organization made up largely of former governmental defense officials, many of whom have since joined the Bush Administration. The limitations of such an approach, however, relate to legitimate concerns over their long-term sustainability – in particular, their reversibility. The lack of a verification system removes an important source of confidence-building for future reductions. It also has not articulated any role for multilateral cooperation. Moreover, the movement to a treaty-free method of arms reductions brings into question the role for the legislatures in the disarmament process: if there are no treaties to ratify, will the role of the legislatures henceforth be limited to general oversight and approving budgets? The loss of a legislative basis of support – weak though it may now be – for further countries. It would be a voluntary arrangement, under which the participating states would agree to certain controls over the conduct of missile tests, including commitments to transparency and advance notification of such tests. It would create a centralized database on global missile stocks and associated missile-related activities. It would provide various forms of technical assistance and security guarantees to states that are participating in this system. It would not, however, constitute any form of a global disarmament system, as some states would be permitted to retain missiles that other states would have to relinquish. As stated in one recent GCS paper, for example, “one has to admit that within the GCS it would be absurd to seek complete elimination of missiles and rocket technologies as an ultimate objective.” To the extent that it preserved a have/have-not dichotomy in the regime, while promoting the use of safeguards over national space launch programs, this approach would in many respects resemble an “NPT for missiles,” only without an Article VI commitment on disarmament.

4. Strategic Escrow. Former US CIA Director Stansfield Turner has proposed this idea as a way to speed nuclear arms reductions. The basic approach calls for the US unilaterally to remove a thousand or so nuclear weapons from their delivery systems and to place them several hundred miles away at a site to be monitored by Russian observers, with Russia doing the same with American observers. The idea is similar to many other approaches focusing not on the physical reduction and destruction of missiles, but rather on the physical separation of warheads from their delivery vehicles. Without using the “escrow” term, US National Security Adviser Condoleezza Rice has expressed similar views in explaining the recent US proposal for unilateral nuclear reductions. One possible advantage of such an approach is that it would, if universally embraced and enforced, “lengthen the fuse” on decisions to shoot the missiles in crises. Another is that the reductions could possibly occur without the need for time-consuming negotiations. The great disadvantages are that it would not actually require the destruction of either missiles or the weapons of mass destruction they would carry; the acts of downloading and storing weapons would not substantially help to de-legitimize such forces per se; and if not legally binding, the commitments would be easily reversible. The “end game” of such an approach may well be a world of dozens of countries each with its own private strategic escrow.

5. Global Control System. As proposed by Russia in March 2000, participation in this system would be open to all countries. It would constitute any form of a global disarmament treaty. This approach, however, does not address cruise missiles and bombers. It favors the implementation of some form of safeguards to allow countries to preserve (and to acquire) national space launch vehicle programs – safeguards that would raise numerous unresolved technical, political, and financial problems due to the inherently dual-use nature of such systems. The problems could aggravate missile proliferation threats if the approach eroded export controls now being implemented by the MTCR with respect to SLVs. By not addressing submarine-launched cruise missiles and heavy bombers, the approach would also leave largely intact at least two legs of the strategic triad along with its associated doctrine of nuclear deterrence.

6. The MTCR. The MTCR has nothing to do with disarmament: it is essentially a cross between “arms control without agreements” and a traditional non-proliferation scheme. Some of its members may retain long-range missiles. Cooperation is purely voluntary. There is no enforcement mechanism or verification system, and transparency is quite limited to periodic exchanges of data on export license denials and limited discussions about missile proliferation developments elsewhere. The process of implementing export controls under this regime has, however, helped to foster the creation of government offices in many countries that produce missiles and the individuals who work in these offices at least potentially represent a cadre of possible support for additional progress in the field of disarmament.
Missile disarmament as a political process

While quite diverse in content, virtually all of the various approaches to missile control and disarmament surveyed above contain one common defect: they fail to address the political dynamics required to achieve their various goals. They are, in this sense, static models. Even extremely detailed approaches that are registered in binding legal obligations – such as the missile destruction and verification provisions of the INF and START treaties – offer limited utility in designing a credible approach to global missile disarmament. The models can provide useful guidance on practical details of implementation, but they offer no clue as to how to mobilize the sufficient political will to create, maintain, and adapt a global missile disarmament regime over time.

René Magritte’s surrealist painting, “Chateau des Pyrénées” depicts a castle atop a giant boulder that is suspended above waves crashing on a beach – we see the castle, yet have no rational explanation for why it is perched atop the boulder nor how it escapes the forces of gravity. Many approaches to missile disarmament, as indeed disarmament in general, adopt a similar approach: they offer exhaustive advice about the castle itself (its architecture, ornamentation, defenses, entrances, exits, and other such features) without explaining why the boulder floats. To some, perhaps the boulder is the foundation.

The challenge, therefore – for all who recognize the concrete national and international security benefits that would flow from missile disarmament – is to bring this castle down to earth. In short, the essential task is to anchor the effort on a solid political foundation. In terms of the criteria discussed above for assessing the efficacy of missile disarmament models, the key questions that remain unanswered are not simply the important technical issues of how this or that missile may be optimally managed or destroyed, or how an ideal treaty ought best be worded. There may well be extremely effective ways to accomplish both technical goals, but such contributions are only relevant if there is political will to implement them. Model builders for missile disarmament must, therefore, closely examine questions of political sustainability – including questions of motivation, as M.V. Ramana has observed32 – not as afterthoughts, but as absolutely crucial steps in the missile disarmament process.

The political importance of treaties. Because of their permanence, their advantages in securing irreversible commitments, the confidence they can generate, their mechanisms of verification and transparency, their potential sources of institutional support within the bureaucracy, their procedures for dispute resolution, and other important features, formal treaties continue to have many advantages over arms reduction schemes that are unilateral or subject to unpredictable shifts of policy. They may take time to negotiate and may not pay quick political dividends to national leaders, but they stand the greatest chance of achieving long-term benefits for international peace and security. Unfortunately, their contributions are also grossly under-appreciated and misunderstood by many critics of arms control.

Another important feature of treaties is that they require legislative approval, which can occur only after the investment of political capital by the national leadership. Treaty ratification is an ingenious mechanism by which political systems promote public understanding and build support for important national commitments. When it succeeds, as it did with the INF Treaty, ratification yields a collective public good. When it fails, as it did ultimately with START II and (so far) the Comprehensive-Test-Ban Treaty in the United States, the source of the failure is typically political in nature (e.g., distrust of the executive, party politics, lack of public understanding, other distracting political issues, bureaucratic missteps, personality disputes, limited media attention, etc.)

National action. A political strategy to produce a missile disarmament treaty that would have a chance at winning universal support requires, first of all, closely coordinated efforts by a network of groups – both inside and outside of government – in states that produce or deploy ICBMs. If key political leaders of these states support the disarmament goal and are willing to work on its behalf, so much the better. The lack of such leadership, however, should not deter political efforts to move the public agenda forward in this area, as good leaders also know when it is wise to follow.

Networks composed exclusively of disarmament groups will not suffice to generate and sustain the level of broad public support needed as a foundation for the negotiation and ratification of a missile disarmament treaty, any more than a set of spark plugs will suffice to power an automobile. Only broad, cross-sectoral coalitions can provide such a foundation. Forging such coalitions itself requires leadership – persuasive individuals who can convince groups with diverse, even conflicting interests that disarmament advances their own special goals.

The potential network of support for disarmament spans entire societies, including, but not limited to: academia; professional associations (e.g. doctors, lawyers, and engineers); women’s groups; business and labor; religious institutions; political parties; legislatures; retired (and to the extent possible, active) military officers and civil servants; private foundations; charities; and opinion leaders in the media and entertainment sectors. Scientists and engineers can specifically help by identifying technical means to build con-
fidence in disarmament verification measures, by refuting technical arguments raised against disarmament, by educating the public and the media, and by providing advice to legislators and other officials in government and international organizations.

The ability of an executive to win legislative support for treaties is especially dependent upon the support it receives from the bureaucracy, which ultimately must provide clear answers to tough questions that arise in the political process of ratification, as well as the equally important political process that precedes ratification. It also depends on the ability of leaders in the executive and legislature to understand each other and to share common perceptions of security demands.

The bureaucracy and the wider community of expert or informed opinion must answer two basic questions: (1) How specifically will this disarmament agreement enhance national and international security relative to the status quo and other approaches to security (e.g. spending more on offensive and defensive military capabilities)?; and (2) What is lost by inaction? Since (in most countries at least) leaders in both branches are elected, the views of the general public are vital, hence the need for the grand coalition described above. They are important also in assisting political leaders to overcome opposition to disarmament by vested bureaucratic and economic interests that former US President Dwight Eisenhower once called the military-industrial complex – a familiar phenomenon by no means limited to the United States.

The facts that treaties take a while to negotiate, are violated (very rarely), and are at times difficult to get ratified are not at all compelling reasons to avoid treaties. The benefits of treaties – in terms of political sustainability and legal longevity – are worth the effort, especially in an area so essential to the national security as a project for eliminating ICBMs. Though the political process will differ in accordance with variations in the political systems of various countries, the basic conclusion remains that the political process required to make treaties offers a solid foundation for the project of sustainable missile disarmament.

International action. Added to these national coalition strategies is the vital need for coordinated efforts among coalitions of states. According to its Charter, one of the four fundamental purposes of the United Nations is “to be a centre for harmonizing the actions of nations” in the attainment of their common ends. Yet progress toward multilateral cooperation in building missile disarmament norms – while a topic of discussion and debate for decades in the UN system – is still in its infancy.

On 15 April 1999 – some 55 years after the world’s first guided ballistic missile (the V-2) became operational – UN Secretary-General Kofi Annan issued a statement pointing out the need for multilateral norms for missiles. Since then, the UN General Assembly has taken some preliminary steps in considering the establishment of such norms, by adopting two resolutions on this issue, the first of which requested the Secretary-General to undertake a study on “missiles on all its aspects” (due later this year). In September 2000, the United Nations Millennium Declaration called for the elimination of all weapons of mass destruction, it did not, however, specifically address their delivery vehicles.

For its part, while the Conference on Disarmament in Geneva – the world’s single multilateral disarmament negotiating forum – has in recent years heard proposals to prevent an arms race in outer space, it is not currently considering any proposal for missile disarmament.

The annual agendas of the General Assembly’s deliberative body, the UN Disarmament Commission (UNDC), have in recent years focused on nuclear disarmament and conventional weapons issues. The next session of the UNDC is scheduled for July 2002, when its participants will consider a “Working Paper” presented by its chairman on “ways and means to achieve nuclear disarmament.” The paper includes several references to the need for progress in the elimination of delivery vehicles for nuclear weapons, but does not address specific means to achieve this goal.

Although the NPT’s Preamble refers to the goal of eliminating nuclear weapon delivery vehicles, this issue typically gets very little attention at treaty’s Review Conferences. There are only two references to delivery vehicles in the Final Document of the 2000 Review Conference, and they deal with regional issues (the Middle East and South Asia). At that conference, seven states known as the “New Agenda” initiative succeeded in including language in the Final Document that outlined thirteen “practical steps” leading to nuclear disarmament – none of these, however, calls specifically for missile disarmament. Similarly, the “New Agenda” resolution adopted by the General Assembly at its 55th session also did not specifically include missile disarmament among its proposals.

Progress at the international level on missile disarmament will have to occur incrementally, given the technical and political complexities involved. Among the many difficult verification challenges that lie ahead, perhaps the most difficult relates to the problem of SLVs. Should each state on earth have its own “safeguarded” national SLV program? How reliable are these safeguards and how would they apply to military satellites? Should states that promise to relinquish missiles be given SLV assistance as a “reward,” and if so, what is to keep states from increasing their demands for such rewards as a condition for either joining or remaining in compliance with control regimes? In short, should disarmament become in effect a fee-based operation?

In the long run, such issues might be best handled by establishing an institutional “wall of separation” between the verification of disarmament obligations and issues relating to peaceful uses. A global International Verification Agency and a separate global agency to share the benefits of the peaceful uses of outer space might be a useful goal to pursue, though sovereignty, nationalism, commercial interests, and cost are just a few of the formidable obstacles to any such arrangement.

While there is far from any global consensus on any specific proposal for missile disarmament, there is clearly evidence of continuing interest in keeping this issue on the international disarmament agenda.
Conclusion
This survey indicates that while there is far from any global consensus on any specific proposal for missile disarmament, there is clearly evidence of continuing — perhaps even growing — interest on the part of UN member states (at least the 98 who voted in favor of the last UN resolution on missiles) in keeping this issue on the international disarmament agenda. Future efforts by individual states or coalitions like the “New Agenda” will help significantly to determine whether the issue merits consideration (a) on its own, (b) as part of efforts aimed at global nuclear disarmament, or (c) as a step toward general and complete disarmament. The least likely outcome — as missile threats continue to grow — is that the public will simply allow the issue to fade away. The choices ahead are up to the member states and the constellation of international and domestic political forces that together make or break progress in multilateral disarmament. Together, these forces constitute the true foundation for Magritte’s castle and all future progress in this all-important field.

1 For a collection of documents describing the recent activities of the MTCC, see a website maintained by the Stockholm International Peace Research Institute, at http://projects.sipri.se/exploit/mtcc_documents.html.

3 Article IX of the ABM Treaty committed both parties “not to transfer” ABM systems or their components “to other states.”

4 For the full text of the NPT, see: www.un.org/Depts/dda/WMD/npttext.html#home.

5 M. V. Ramana, Is There a Threat? The Dynamics of Missile Proliferation and the State of Missile Control, INESAP Information Bulletin, Issue No. 18, September 2001, p. 16.

6 For a text, see: www.defenselink.mil/aacq/acic/treaties/in/tf/toc.htm.

9 Ibid.

10 Ibid., remarks of Gen. Valery Manilov.

11 Ibid.

12 In their remarks cited above, Ambassador Streltsov also stated that “the main outcome of the treaty was [the] actual transition from general slogans on the need to reduce nuclear arsenals to real liquidation of nuclear weapons,” and Ambassador Steinier said that the treaty “brought about real destruction of weapons of mass destruction,” ibid. The treaty, however, destroyed a specific category of missiles — not the nuclear warheads attached to them.

14 The full texts are located on the following State Department website: www.usinfo.state.gov/topical/pol/arms/start.

17 On 13 November 2001, Presidents Bush and Putin met at Crawford, Texas, and both agreed to reduce their deployed strategic nuclear weapons to a level of 1,700-2,200. David Sanger, The Bush-Putin Summit: The Accord, New York Times, 14 November 2001, p. 1. President Bush announced the level unilaterally and stated that there was no need for a formal treaty. Bilateral negotiations are now underway to codify the current US/Russian understandings on deep cuts of deployed nuclear weapons.

18 For relevant documentation, see the UN Department for Disarmament Affairs web site: www.un.org/Depts/dda/WMD/treaty/index.html.

19 For a text of this Final Document, see: www.un.org/Depts/dda/WMD/2000FD/pdf; the thirteen steps appear on pages 14 and 15 of this text.

27 National Institute for Public Policy, Rationale and Requirements for US Nuclear Forces and Arms Control, Keith Payne (Study Director), Vol. 1, Executive Report (Fairfax, Va.: NIPP, 2001).

29 She stated recently that “I believe that what the president was referring to [in his 13 November 2001 announcement of deep cuts in the US nuclear arsenal] is [that] we will not have these warheads near the places at which they could be deployed.” Cited in Hans M. Kristensen, The Unruly Hedge: Cold War Thinking at the Crawford Summit, Arms Control Today (December 2001), p. 8.

30 Informal translations of the documents pertaining to the first GCS meeting in Moscow on 16 March 2000 may be found at: www.fas.org/nuke/control/mtcc/news/GSC_content.htm. A second meeting took place in Moscow on 15 February 2001; an unofficial translation is available at: www.chile.mil/ru/chile/abross.html.

31 See footnote 5.

32 For a text of President Eisenhower’s famous Farewell Address to the Nation, 17 January 1961, see: http://mcadams.posc.mu.edu/ Ike.htm.

34 UN Charter, Article 1(4).

39 Ibid., pages 6, 12, and 14.

41 UN General Assembly, Resolution 55/33 C, adopted 20 November 2000. The seven states that form the New Agenda group are: Mexico, Brazil, Ireland, Sweden, Egypt, South Africa, and New Zealand.

Randy Rydell is a senior political affairs officer in the office of the UN Under-Secretary-General for Disarmament Affairs. The views expressed herein are solely those of the author. Dept. for Disarmament Affairs; Room S-9170E; United Nations; New York, NY 10017 USA; tel. +1-212-963-5837; rydell@un.org.
Efficiency and Inefficiency of the MTCR

Mark Smith

The Missile Technology Control Regime (MTCR) remains the only multilateral regime specifically set up to address missile proliferation, despite recent efforts to establish more comprehensive, less discriminatory controls. Multilateral missile non-proliferation has noticeably lagged behind the rest of the global weapons of mass destruction (WMD) non-proliferation regime, and represents the missing piece of that system.

The MTCR therefore operates largely by itself – uniquely, global non-proliferation on missiles relies almost entirely upon supply-side controls. This generates a number of difficulties, not all of which can be blamed upon the MTCR itself. An assessment of the efficiencies and inefficiencies of the MTCR, therefore, ought to take account of this fact and note of problems outside the MTCR itself. In other words, it should acknowledge what the MTCR cannot do, as well as highlight what it could achieve more effectively. With that in mind, this paper will look firstly at what the MTCR can and has achieved, and follow this by looking at what it might function more efficiently. The concluding section looks at what the MTCR cannot achieve by itself: it is here that the most serious problems exist.

What the MTCR can do

The original goal of the MTCR was to coordinate restraint in technological transfers, in order to restrain missile proliferation. So the question here is how efficiently transfer restraint has been coordinated, and how effective that has been in restraining missile proliferation.

The MTCR was originally conceived as a vital adjunct to the Non-Proliferation Treaty (NPT) – a way to beef up nuclear non-proliferation by controlling missiles. The idea was to keep this technology in the possession of the small number of states that already had it, in the hope that this would deter others from trying to develop the technology themselves. If they were not put off by the unavailability of technology, it was thought that the Scud barrier would be a sufficient obstacle to all but the most determined indigenous programme. It is not always easy to identify successes for the MTCR. Like deterrence, it can be assumed to be working if nothing happens, but the causal relationship may not be clear. Like deterrence again, failures can be glaringly obvious. Early successes were the termination of the Argentinian and Brazilian long-range missiles. Longer-term indicators are that ballistic missile proliferation outside the MTCR still appears to be Scud-based – the Nodong and Taepodong missiles are essentially modernised Scuds. Thus Second World War V-2 technology still appears to be the base element in ballistic missiles outside the P5 nuclear weapon states (i.e. those with a permanent seat at the UN Security Council). This is perhaps the best indicator of the efficiency of the MTCR.

The challenge is vertical proliferation in states like Iran and the DPRK, India and Pakistan, as well as horizontal proliferation to non-missile states. The prime challenge is to prevent development upwards – Medium Range Ballistic Missiles (MRBM) to ICBM, Space Launch Vehicles (SLV) to ICBM. Here, we are down to very difficult cases. By 2001, DPRK (North Korea), Iran, Pakistan, Israel, and India had all tested or deployed missiles with ranges of 1,200 km or more, and many had been highly critical of the MTCR. The Scud barrier is also becoming less of an obstacle than it had been; Aaron Karp pointed out last year that there is no such thing as obsolete technology in missiles. Moreover, developments in propulsion and propellants meant that it was possible to do more with basic technology than was thought possible at the MTCR’s inception (although probably not as much as some National Missile Defense advocates claim).

Inefficiency in the MTCR

It has become increasingly evident that there are leaks in the loose framework of the MTCR. Over recent years, evidence has been emerging that ballistic missile proliferation outside the MTCR is not all indigenously produced. Intelligence reports, particularly in the US, regularly cite Russia and China as suppliers of missile technology. Earlier this year, the CIA Director, George Tenet, testified to the Senate “The three major suppliers of missile technology to regions like the Middle

Second World War V-2 technology still appears to be the base element in ballistic missiles outside the P5 nuclear weapon states.
or WMD-related technologies continue to be Russia, China and North Korea. Tenet’s remarks are representative of official thinking in Washington, as was evinced by Defense Secretary Rumsfeld’s public remark that “Russia is an active proliferator. They are part of the problem. They are selling and assisting countries like Iran and North Korea.”

This rhetoric has been toned down lately, but intelligence reports have so repeatedly cited Russia and China as chief offenders (China is a partner rather than a member, but has pledged to abide by MTCR provisions on nuclear-capable missiles), that the post-September 11th restraint in US rhetoric is a lull rather than a change of heart. It does seem as though missile technology is leaking from the MTCR: a recent report by the Carnegie Institute described the missile programmes of India, Pakistan and North Korea as visible failures of the MTCR – i.e. the missiles were not entirely indigenous in origin.

Two aspects of the regime may contribute to this. First, the lack of transparency and legal mechanism. The MTCR works by policy coordination, and has no real verification and compliance mechanism. There is no multilateral mechanism to identify non-compliance, and the ability and will of some members to implement their controls may be open to question. Second, this loose policy coordination model of the MTCR requires a close identification of political and strategic objectives. This was the case in 1987 when the regime was set up, but much less so now. It is no longer possible to rely on like-mindedness to be a guarantee of compliance, because the regime context has changed so much.

Troubles due to inefficiencies within the regime itself. In fact, the real problems lie outside the regime, and moreover are problems that the MTCR was not designed to address by itself. This raises the issue of what the MTCR cannot be expected to do.

What the MTCR cannot do

Firstly, the MTCR cannot set norms. It began with a fragile or non-existent normative base; the anti-missile proliferation norms came from the like-mindedness of its founders, but were not written into the regime at the beginning. Thus the regime was always going to struggle to gain legitimacy outside its membership. Most of the world’s stock of Intermediate Range Ballistic Missiles (IRBMs) and all of its ICBMs are in the hands of MTCR members or partners, which unavoidably implies that ballistic missile proliferation is not generally destabilising, but destabilising for MTCR members.

Second, the MTCR cannot address the causes of missile proliferation. It addresses one cause – ‘dabbling’, or a missile programme based more on opportunistic imports than genuine commitment – and cuts it off effectively, but does little or nothing about other drivers such as chronic insecurity. There is no incentive for states outside it to follow non-proliferation, other than the fact that missile technology is hard to come by. But the fact that missiles with a range of 1,200 km-plus are now in the hands of non-members made that no longer the case. The Scud barrier seems to be collapsing or at least eroding, and most of the Scud modernisers are not only non-members of the MTCR, but are actively hostile to its goals.

These two problems were highlighted in emphatic fashion during last year’s UN debate on the missile issue. Pakistan’s statement noted “states which reserved the right to deploy thousands of missiles were now seeking to prevent developing countries from developing missiles for legitimate self-defence. The international community must resolutely resist that discriminatory trend. The need to promote the peaceful uses of missile technology was not adequately covered in the draft resolution. Pakistan hoped the resolution would allow the evolution of greater equity in the field of missiles.”

This view of the MTCR appears to be widespread. To change its discriminatory image was thus a key challenge for the MTCR, as was the need to be equitable: members could not be seen to be advocating commitments that they were not prepared to take on themselves. A second challenge was to somehow separate SLVs from ballistic missiles.

The lack of demand-side norms is therefore corrosive, since the norms the MTCR is trying to pursue struggle to gain legitimacy outside the regime. Moreover,
and expertise into missile development, the economic reasons for staying out of the MTCR may be considerably stronger than those for joining it. Supply-side strategies alone may therefore help to create the conditions for their own failure.

Conclusions

The MTCR is not a non-proliferation regime, and it cannot become one. It is a component of a non-proliferation regime, with the vital other part – demand-side norms – missing. Thus the real problem is not with the MTCR itself, but with the absence of a demand-side regime.

These are problems for the MTCR. The biggest problem of the MTCR is its discriminatory nature. Thus it is not only the demand-side regime that needs to be constructed – it is also a more self-critical and equal approach to missile holdings within the regime. The demand-side regime will struggle to get off the ground without some show of willingness among MTCR members.

2 Aaron Karp, *Can Other Non-Proliferation Regimes be Insulated from Developments in Missile Proliferation?*, paper submitted to workshop on “The Tough Challenges Facing Nuclear Non-Proliferation”, Højskjæer, Norway, 10-12 December 1999.
4 CIA Director George Tenet Raises Proliferation Concerns, Arms Control Statements from the US Department of State, 8 February 2001.
5 Rumsfeld Deems Missile Shield System Feasible, Arms Control Statements from the US Department of State, 15 February 2001.

International Network of Engineers and Scientists Against Proliferation (INESAP)

The main objectives of INESAP are to promote disarmament of nuclear weapons and their delivery systems, to tighten existing arms control and non-proliferation regimes, as well as to implement unconventional approaches to curbing the proliferation of weapons of mass destruction and to controlling the transfer of related technology.

INESAP is a non-profit, non-governmental network organisation with participants from all over the world. It is part of the worldwide activities of INES. The INESAP Coordinator, who manages most of the INESAP activities, is hosted by the Interdisciplinary Research Group in Science, Technology and Security (IANUS) at Darmstadt University of Technology (Germany). The international Coordinating Committee of INESAP has seven members on four continents.

INESAP Information Bulletin

The INESAP Information Bulletin is the main medium of INESAP for international communication. It serves a platform for distributing science-based information and for debating non-proliferation and disarmament issues, both inside and outside the network. The INESAP Information Bulletin is published several times a year.

Issue #19 was released in March 2002 and focused on the following topics: Bioterror and Bioweapons Control; Terror, Counterterror and Nuclear Disarmament; Missile Defense and North-East Asia; Dual-Use and the Weapons Labs. Issue #20 is planned for July 2002. It will focus on proposals for a space weapons ban.

Conference Proceedings

In addition to documenting workshops and conferences in the INESAP Information Bulletin, Conference Proceedings are published at irregular intervals.

Impressum

INESAP Coordinating Committee
Prof. Dr. Anatol Diakov (Russia)
Dr. Martin Kalinowski (Germany)
Dr. George Lewis (USA)
Dr. Zia Mian (Pakistan)
Prof. Dr. Dingli Shen (China)
Prof. Dr. Fernando de Souza Barros (Brazil)
Dr. Johan Swahn (Sweden)

Coordinating Editor
Regina Hagen
INESAP, c/o IANUS, Hochschulstrasse 4a, 64289 Darmstadt, Germany
Phone +49-6151-16 44 68
Fax +49-6151-16 60 39
inesap@hrzpub.tu-darmstadt.de
www.inesap.org

Published by INESAP.

Printed at IANUS

Layout Julia Veits

Mark Smith, Mountbatten Centre for International Studies, University of Southampton, Highfield, Southampton SO17 1BJ, UK: mjs10@soton.ac.uk.